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5.1. Introduction:
All of the series convergence tests we have used require that the underlying
sequence {an} be a positive sequence. In this Unit we explore series whose

summation includes negative terms. We start with a very specific form of series,
where the terms of the summation alternate between being positive and negative.

5.2. Alternating Series:

n

Definition: A series of the form > (-1)""u, = u —u, + Uy —U, + Ug = e
n=1

where u, > 0,V n is called an alternating series.

5.3. Leibnitz’s test for Alternating Series:

Statement: The alternating series
S(-1)"Tuy = U Uy Uy = Uy Uy = s (u, > 0,V n) converges if

n=1

. u>u vn and

n n+11?

ii. limu, =0

n — o

1

Proof: Let S, denotethe n' partial sum of the series i(—l)”_ u

n=1

S,y =U —U, + Uy —U, + U — oo, Uy p + Uy gy — Uy,
= U — (U, — Uy )= (U = Ug ) = oo (Upp o= Uy ) = Uy
=ul—{(u2—u3)+(u4—u5)+ .......... +(u2n72—u2n71)+u2n}

<u (U 2u, & U, >0Vn)

S, <u

eIy =

L, Vn
= The sequence (S,, ) is bounded above.
Also Sonsz = Sy + Upyig — Uy s

= S2n-¢-2 - SZn = Upig — Uy > 0 ( unZ Upigs

E S2n+2 - SZn 20 = S2n+2 2 Sznf von

= The sequence <82n> IS monotonically increasing.



Since, every monotonically increasing sequence which is bounded above
converges, therefore the sequence <82n> converges.

Let the sequence (S,, )convergesto S i.e. lims, = S.

n — oo

Now,

n n — o

M S, = lim (S, +1,,) = limS, + limu, ,=S+0=5 ( lim u, = o)
s

lim 82n+1 =

n — o

The sequences (S,,) and (S,,.,) converges to the same number s.
= V e > 0 there exist positive integers m, & m, such that

, V2n>m & ‘SMH—S‘S , V2n+1>m,

<
2

= Thesequence (S, ) isconvergesto s.

The given series is convergent.
Example : Discuss the convergence of the following series

_1)n—ln
;) n
Z 5n
2. 1- 1 + 1_ l+ .........
3 5 7
1 1 1 1
3. - + - AR
log 2 log 3 log 4 log 5
1 1 1
4, e ¥(1+ 2) +F(1+ 2+3) —
Solution:
C . . n n+1
1. Which is an alternating series & here u, = wo U =

Consider




:inKSn—n—lj: n1+l(4n —1) >0 wn
5 5 5 5

= u - U, >0 =>u >u.,,vn and

. .n

imu, = lim— =0

n—ow n—o§Q"

u, 2U,,,vn & limu, = 0
n—» o

By Leibnitz’s test, the given series is convergent.

2. Which is an alternating series & 1 - % + % — %+ ...... =
Here Un = 1 y . un+1 = l
2n -1 2n + 1
Consider
1 1 2n+1—(2n—1)
un _un+l: - =
2n — 1 2n + 1 (2n+1)(2n—1)
:2n+1—2n+1 _ 2 >0. Vn
(2n +1)(2n - 1) (2n +1)(2n - 1)
= u - U, >0 =>u >u.,,vn and
limu, = Ilim =0
n— o n~>oo2n_1

u, >2U,,,vn & limu, = 0

n—»w

By Leibnitz’s test, the given series is convergent.

3. Which IS an alternating series
1 1 1 1 (-1)""
— + — o = Z—, vYnz>>2
log 2 log 3 log 4 log 5 log n
Here u = ——,n>2, ~u = — >+
logn log(n+1)
Consider
u, —u,,., = ! 1 > 0, Vn

logn log(n+1)




1 1

wn < 1,V | < 1 >
n<n+ n = logn<log(n +1) = o0 1 og(n + 1)
N S 1 -
log n log(n +1)
= u - U, >0 =>u >u,,vn and
. . 1
limu, = Ilim— =
n— o n—>oo|ogn
~u =2Uu,,,vn & limu, = 0
By Leibnitz’s test, the given series is convergent.
4. Which IS an alternating series &
1 1 1 n-1 1
i ?(1+ 2) +F(1+ 2 +3) — ... = > (-1) (n+l)3(1+2+3+...+ n)
u, = 1 (1+2+3+..+n) = L 3 n(n+1) =L2,
(n+1) (n+1) 2 2(n+1)
U = n+1
T 22y
Consider

U - U = n . n+1 =£[ n 3 n+1]
T 2+’ 2(n+2) 2\ (n+1)  (n+2)
1 n(n+2)2—(n+1)2 n+1)] _1[n(n+2)2—(n+1)3J
2 (n+ 1)2 (n+ 2)2 (n+ 1)2 (n+ 2)2
n(n2+ 4n+4)—(n3+3n2+3n+1)J
(

2

(n +1)2 n -+ 2)2

n+ 4n®> + 4n —n®-3n>-3n -1
(n+1)2 (n+2)2

5 2J>0,Vn
(n+1)" (n+2)

20 = u, >u

n =

., Vn oand



. : n 1 n
limu, = lim > = Ellm 5
2(n+1) n2(1+1J
n
= = lim 1 = =x0 =0

u, 2 u,,,vn & limu, = 0

n n+l?
n—» o

By Leibnitz’s test, the given series is convergent.

5.4.Absolute Convergence:

Definition: A series i u, Is said to be absolutely convergent if the series
n=1

i‘(—i)”‘lun ie. 3|u,| isconvergent.
n=1 n=1
5.5. Conditional Convergence:

Definition: A series i u, is said to be conditional convergent if the series
n=1

o0

2.

n=1

(-1

n

i.e. i|un| is divergent.
n=1

5.6. Theorem: Every absolutely convergent series is convergent, but converse is
not true.

Proof: Since > u, is absolutely convergent series.
n=1

= i|un| Is convergent.
n=1

. By Cauchy’s general principle of convergence
= V e >0 there exist positive integer m such that

<e,Vn=2m

+‘u

o

m+1+‘um+2 m+ 3

+ (U

m+ 3

| <e,Vnxm 1)

+ |u

u

m+1 m+ 2

Consider



(v [x+yl<[x[+]y])
< e, vVn>=m ( FromEq.(l))

= ‘Um+1+ Uy, o+ U o+ et U

- By Cauchy’s general principle of convergence, the series »_ u, is convergent.
n=1

n=1

Hence, > u, isabsolutely convergentseries = ) u, is convergent.
n=1

Converse is not true:
I.e. Every convergent series is need not be absolutely convergent.

Consider an example:

(-0, 1 1 1
> - =1 5 T3 gt
1

1
Here u = =, - u
n n n+1 n+1

Consider
Un—Un+1=—1— 1 _ n+1—n: 1 >0, vn
n n+1 n(n+l) n(n+l)

vn and

= u -Uu,, =20 =u 2u,,,,

limu, = lim= = 0

n — «© nawn

u, >2U,,,vn & limu, = 0
n—» o

. : —)h
By Leibnitz’s test, the series % IS convergent.

= Zl Is divergent. (- itisp—serieswithp=1) .
n

n-1
But, the series Z‘ %

Example 1: Determine whether ) converges absolutely, conditionally, or
3/~2
n=1 YN

not at all.



Solution: First we check absolute convergencez 3_ )2 :
= 4N

(1)

IS a p-series with p> %

S-S

So the series of absolute values diverges. The original series is not absolutely
convergent.
Since the series is alternating and not absolutely convergent, we check for

. . : : . 1
conditional convergence using the alternating series test with a, =—-.
n

Check the two conditions.

1
1. lima, —Ilmm—o
N—o n~>oon

1

(n+1)2/3 < n2/3 !

2. Further an+1 < a, because

o0 (_1)”

Since the two conditions of the alternating series test are satisfied, Z

n=1 %/nj

conditionally convergent by the alternating series test.

Example 2: Determine whether Z converges absolutely, conditionally, or

Jr

not at all.

Solution: First we check absolute convergence . Z

F

So let’s use the limit comparison test. The terms of the series are pos1tive and

. a i 1
Iim—==Ilim

n—o0 bn n—o0 n2 _1

=1>0.

Since the harmonic series Z% diverges (p-series with p = 1), then )’ )

n=2 =2 \/nz -1

diverges by the limit comparison test. So the series does not converge absolutely.




Since the series is alternating and not absolutely convergent, we check for
1

-1

conditional convergence using the alternating series test with a_ =

Check the two conditions, 1. lima, =lima, =0.

n—o n—o 2
n

-1
1

J(n+1)7 -1 ) Jn?-1

2. Further an+1 < an is decreasing because . (You could also

show the derivative is negative.)
()’
n’ -1

IS

Since the two conditions of the alternating series test are satisfied, Z
n=2

conditionally convergent by the alternating series test.

Example 3: Determine whether Z( o) (2” 7)

converges absolutely,
~  6n°-2n

conditionally, or not at all.

= (=D (2n* +7) Z(2n4+7)

Solution: First we check absolute convergence. ) P 6" 2
n°—-2n n°—-2n

n=1
So let’s use the limit comparison test. The terms of the series are positive and

4
lim2x _Ilmw 1.0
o noe B0’ —2n 3

Since the harmonic series ZiS diverges (p-series with p = 5 >1), then

n=1 n
Z - 2 (2n 7 converges by the limit comparison test. So the series converges
n=1 n’ -
absolutely.

5.7. Uniform Convergence:

Consider the series Zu ) whose terms depend upon a variable x, other than

the running n. The series may converge for some value of x and diverge for
others. Suppose the series converges for all x in some closed interval a<x<b.



The sum of the series will be, in general a function of x Ii.e.

= iun(x), a<x<b.

The n'" partial sum of the series is

X) = Zn:uk(x), as<x<b,
k=1

Definition: A sequence of functions (s (x)) is uniformly convergent to the

function s(x) over the closed interval [a, b] if ve>0 there exists n,(e)
such that
s,(x) — s(x)‘ <e Vn>n(e) &Vxela,b].

5.8. Theorem 4. (Weierstrass’s M-test): A series of functions Y f, will converge
uniformly (and absolutely) on [a, b] if there exists a convergent series > M of
positive numbers such that for all x € [a, b] such that |[f,(x)| < My, for all n.

Examples: Test the following series for uniform convergence of
COS Nnx
1y -

2.2

N +n'x’
1
S L
Solution:1. Given Serigs is Z o° X
cos nx| _[cos nx|
n® n®
|co;_pnx| — (=M,) for all values of x

0

Since > M, = Zip converges p > 1
n

n=1 n=1
By M test, the given series converges for all real values of x p > 1.



Examples 2: Test the convergence of the series 1+ X+ X° +............ X"+ for

) ) ) -11
uniform convergence in the mterval(—,—).

Solution:( Please Try yourself).
Exercise

1. Discuss the convergence of the following series,

(- (1)
DI DY I 9 Son 1

+1 al:3:5. (2n-1) 2 (-1)"n!
e)é( V'35 ﬂé( AW (3n-2) 9) §1.3-5 .......... (2n-1)
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